
StarLogo TNG: An Introduction to Game Development

Andrew Begel
University of California, Berkeley

abegel@cs.berkeley.edu

Eric Klopfer
Massachusetts Institute of Technology

klopfer@mit.edu

December 24, 2004

Abstract

The science of developing computer programs offers a
rich educational experience that can help students gain
fluency with information technology. Unfortunately,
while computers have become commonplace in schools,
the practice of teaching programming is being squeezed
out of high school and middle school curricula. We be-
lieve that programming should be reintroduced to stu-
dents, and that this can be done by focusing on video
game construction, a compelling subject area for many
students. Given the current expertise required to cre-
ate a modern video game, new tools are needed to make
this experience accessible to students. We have devel-
oped StarLogo TNG, a visual programming- and 3D-
based environment that enables students to easily pro-
gram their own games. It uses graphical programming to
ease the learning curve for programming, and 3D graph-
ics to make the developed games more realistic. An ini-
tial pilot study has shown that these innovations appeal
to students, and in particular appeal to girls.

1 Introduction

In today’s world, computer literacy is a required skill,
just like the ability to read, write, do arithmetic, and
communicate one’s ideas to others. In order to pre-
pare children to enter this adult world, it is necessary
to provide them instruction in the constructive use of
computers. While many children already understand
how to consume information with a computer (i.e. lis-
ten to audio files, watch movies, or browse the web),

they often do not get the chance to produce content (i.e.
author their own home page, compose and play their
own computer-based music, or produce their own home
movie). In other words, when it comes to computers,
children know how to “read,” but do not often know
how to “write.” School activities tend to concentrate on
obvious job skills, such as training with word proces-
sors, spreadsheets and accessing databases. But to gain
a real fluency with technology, children require a new
set of skills (Murnane & Levy 1996). In 1999 the Na-
tional Academies of Science outlined a set of FITness
skills (National Research Council 1999) that defined the
ways in which students will need to be able to use infor-
mation technologies for their personal and professional
lives in the coming years. These skills include:

• Engage in sustained reasoning– Students have
the ability to plan, design, execute and evaluate so-
lutions to problems.

• Manage complexity/Expect the unexpected–
Students are able to plan a project, design a solu-
tion, respond to unexpected interactions/outcomes
and diagnose what is needed for each task.

• Test a solution– Students determine the scope, na-
ture and conditions under which a solution is in-
tended to operate. A solution to a problem must be
tested to determine that the solution is appropriate
to the problem at hand.

• Organize and navigate information structures
and evaluate information – Students have the
ability to locate, assess and use relevant informa-
tion.

1

• Collaborate – Students have a clear sense for how
the various parts of a problem are made to oper-
ate together, as well as the expectations for his or
her own part, and strategies for ensuring that team
members work appropriate parts of the problem.

• Communicate to other audiences– Students un-
derstand the needs of their audience and use ap-
propriate language and tools to communicate effec-
tively.

These principles center on the idea that we must cre-
ate a culture in which students can navigate novel prob-
lem spaces and collaboratively gather and apply data
to solutions. Resnick (Resnick 2002) suggests that an
equally important goal is for educational programs to
foster creativity and imagination. In other words, stu-
dents should be acquiring habits of mind that will not
only enable them to address today’s problems and so-
lutions, but will also allow them to venture into pre-
viously unimagined territories. To achieve this, they
should have a facility with tools to create manifestations
of their ideas so that they can test them and convey their
ideas to others.

1.1 Computer Programming

Computer programming is an ideal medium for students
to express creativity, develop new ideas, learn how to
communicate ideas, and collaborate with others. The
merits of learning through computer programming have
been discussed over the years (Harel 1990, Papert 1993,
Kafai 1995, Kafai 1996). As a design activity, computer
programming comes along with the many assets asso-
ciated with ”‘constructionist”’ (Harel & Papert 1991)
learning. Constructionism extends constructivist theo-
ries, stating that learning is at its best when people are
building artifacts. These benefits of learning through
building include (Resnick, Rusk & Cooke 1998):

• Engaging students as active participants in the ac-
tivity

• Encouraging creative problem solving

• Making personal connections to the materials

• Creating interdisciplinary links

• Promoting a sense of audience

• Providing a context for reflection and discussion

As students learn to conceptualize and develop their
own computer programs, this specific type of design and
construction activity comes along with many potential
learning outcomes. Some of these apply specifically
to the opportunities opened by the knowledge of com-
puter programming, which alone can provide access to
whole new worlds of exploration (Wolfram 2002). Other
learning outcomes from programming are more broadly
applicable. Typical programming activities center on
the notion of problem-solving, which requires students
to develop a suite of skills that may be transferable to
other tasks. As students learn to program algorithms
they must acquire a systematic reasoning skills. Mod-
eling systems through programs teaches students how to
break down systems into their components and under-
stand them. Many problems require students to acquire
and apply mathematical skills and analysis to develop
their programs and interpret the output. Together these
skills comprise a suite of desirable learning outcomes
for students, many of which are difficult to engender
through typical curriculum. They can also form the cor-
nerstones of true inquiry-based science (American As-
sociation for the Advancement of Science 1993), pro-
viding students with a set of skills that allows them to
form and test hypotheses about systems in which they
are personally interested.

1.2 Programming Education

Computer programming was widely introduced to
schools in the early 1980s, largely fueled by cheap per-
sonal computers, and inspired by Papert’s manifesto,
Mindstorms (Papert 1980), which advocated that pro-
gramming in Logo was a cross-cutting tool to help
students learn any subject. Logo was popularly used
to to enable students to explore differential geometry,
art, and natural languages. Microworlds Logo (Logo
Computer Systems Inc. 2004) extended this use into
middle school where students continued to learn about
mathematics, science, reading and storytelling. Kid-
Sim/Cocoa/Stagecast Creator (Cypher & Smith 1995)

2

brought modeling and simulation to children through
a simple graphical programming interface, where they
could learn thinking skills, creativity, and computer liter-
acy. Subsequent work with Stagecast Creator has shown
some success in building students’ understand of simple
mathematical concepts through building games (Lucena
n.d.). Boxer (di Sessa & Abelson 1986) is used to
help students in modeling physics and mathematical
reasoning, while building understanding of functions
and variables. Kafai (Kafai 1996) introduced novel
paradigms for helping students learn about mathematics
and social and relational skills through programming of
games. Through this paradigm, older elementary school
students use Logo to develop mathematical games for
younger elementary students. It is of note that most of
these efforts have been targeted at elementary school
aged children. Few efforts have targeted the middle
school and high school audience.

Despite many small-scale research efforts to explore
programming in schools, Papert’s larger vision of perva-
sive programming in school curricula encountered some
serious problems. Programming did not fit into tradi-
tional school structures and required teachers to give up
their roles as domain experts to become learners on par
with the children they were teaching. (Agalianos, Noss
& Whitty 2001) Correspondingly, teachers grew disil-
lusioned and tried to marginalize programming in their
curricula, going so far as to put it into its own subject,
computer science. Computers were used to teach typing
skills, and Papert’s vision of programming as a vehicle
for learning seemed to be dead in the water.

With the growing popularity of the Internet, many
schools have revisited the idea of computers in the class-
room and rediscovered their utility in the educational
process. Schools now use computers to target job-
oriented skills, such as word processing and spread-
sheets. Some schools encourage children to create mass
media, such as computer-based music, animations or
movies. For the last several years, the state of Maine has
provided laptops to all of its 7th and 8th grade students
(and teachers) to make computers a ubiquitous tool in
every subject in school (State of Maine 2004).

Now that computers in school are enjoying a resur-
gence in popularity, it is time to reconsider programming
as a vehicle towards fluency in information technology.

2 Programming Revisited

The benefits of computer programming have inspired us
to revisit the use of computer programming in the class-
room, and see if there are ways that we can reintroduce
programming into the curriculum. One way we feel to
increase interest is to move programming in a direction
where it would be easy to build video games.

Why should video games be part of a school curricu-
lum? Kafai (Kafai 1995) makes a compelling case for
teaching young children to program by using games as
a focal piece. The advocacy and research group, Edu-
cation Arcade (The Education Arcade 2004), has devel-
oped pedagogy for integrating games in math, science
and humanities curricula to better understand what ben-
eficial roles games might play in educational activities.
Games have the potential to entice today’s youth into
programming. Today’s middle and high school students
have grown up with video games as a part of their cul-
ture. For many it is what entices them to use technol-
ogy. While boys still currently invest more time in game
playing than girls, the gap is rapidly closing and both
boys and girls have become avid gamers. Through this
familiarity with games, students have begun to develop
one half of a video game literacy - they have learned
to “read.” But they have not yet developed the other
half of that literacy - learning to write. But we can use
the existing half of their literacy to lead them into writ-
ing, thereby connecting their interest and knowledge of
games to the practice of programming.

Game design and construction require that students
learn programming skills; through careful design of the
activity and the environment in which it is enacted it is
possible to teach children how to make games and inci-
dentally learn programming. One might ask how learn-
ing about games will help at all to learn how to program.
Games have a lot of natural connections to programs, for
example, most games have animated characters that re-
act to control by human players. These animations and
their sequencing and reactions must be scripted to be-
have properly. Characters’ behaviors are all based on
models of behavior that are implemented by algorithms
and whose state is stored in user-defined data structures
maintained by the characters. Choosing data structures
wisely is important to making a game play well and

3

efficiently. Computer-controlled characters incorporate
forms of artificial intelligence to decide how to interact
with the player’s character. Even simply enumerating
all the characters’ behaviors is similar to planning out
the features of a computer application during design.

Storyboarding a game requires knowledge of se-
quencing and branching which resemble binary deci-
sion diagrams used in operations research applications.
Game scenery design involves both creating an artis-
tic look and a game environment’s functional behav-
ior. Generating realistic-looking flora and landscapes
taps into fractal geometry and iterative functions, both of
which have very strong ties to the mathematics of recur-
sive functions. Reality-based sporting games often link
to large databases of statistics to help specify the vir-
tual characters’ behaviors. Simulation games like Sim-
City are based on mathematical models of city planning,
geology or human behavioral systems, all of which re-
quire algorithm design and data structures. Games have
a significant non-deterministic component (the human
player), so they often exhibit unexpected behaviors. De-
bugging these behaviors requires long hours of testing to
identify, diagnose and correct problems.

3 Video Game Construction Kits

The complexity in making professional quality video
games has risen steadily since hackers built the first
video games (e.g. Spacewar!, Pong) to the point where
making games requires an entire Hollywood production
crew, with actors, writers, and directors in addition to a
large team of programmers. Despite their complexity,
these games are not sealed products. A large commu-
nity of developers and hobbyists have used “modding”
tools to customize games using new skins for characters,
weapons and environments. While game engines like
Quake and Doom make this process relatively straight-
forward, they all require a fair degree of sophistication
and programming expertise to do anything more than
import new characters (including adding new behav-
iors).

This need for programming expertise may appear to
be an insurmountable obstacle in enabling children to
make professional-quality games, but this has not al-
ways been true. Commercial efforts to develop game

construction kits for children have successfully em-
ployed a simple click-and-drag paradigm to make game
construction easy. Some of these kits, which include
Klik ’N Play and The Game Factory (Budge 1983, Eu-
ropress Software Ltd. 2004, Clickteam S.A.R.L. 2004),
were used for building real-time strategy games. Unfor-
tunately, while the click-and-drag metaphor lowers the
initial barriers to building a game, it lowers the ceiling as
well. By contrast, a full-fledged programming environ-
ment would allow developers to create virtually limitless
types of games.

Many general programming toolkits have been used
by instructors as platforms upon which children can
build games (Logo Computer Systems Inc. 2004, In-
galls, Kaehler, Maloney, Wallace & Kay 1997, Repen-
ning & Sumner 1992). These toolkits have recently
grown more scarce due to a de-emphasis of program-
ming in the curriculum and the sophistication of tools
required to create the photo-realistic three-dimensional
renderings of modern games. Alice 3D (Conway,
Pausch, Gossweiler & Burnette 1994) is one tool that
has tried to make this jump. It is a 3D modeling and pro-
gramming environment, though its level of sophistica-
tion makes it most appropriate for advanced high school
and early college students.

We are trying to address this scarcity of tools. The
way to make video game toolkits that are easy to use
by children is to tap into the same increase in computer
power that engendered the rise in game complexity. The
abundance of CPU power enables us to create a game
construction environment that already includes the great
graphics, character animations, sounds and storyboard-
ing; all that is left for the child to do is to come up with
an idea for a game, design the game levels, create the
characters’ looks, and program their behavior.

In the next section, we introduce the StarLogo pro-
gramming environment and discuss how we have en-
hanced it to be a platform that enables children to create
video games.

4 StarLogo

Over the past years we have been working with Star-
Logo, a programmable modeling environment that em-

4

Figure 1: The left-hand panel shows a StarLogo model
of an epidemic in action. One can see the interface area,
in which users can start and stop the model and adjust
parameters, the running model where the different colors
code for different states, and the graphs at the bottom
tracking model data. The right-hand panel shows the
code that was written to generate this model.

braces the constructionist paradigm of learning by build-
ing. StarLogo was designed to enable people to
build models of complex, dynamic systems. In StarL-
ogo (Resnick 1994), one programs simple rules for indi-
vidual behaviors of agents that “live” and move in a two-
dimensional environment. For instance, a student might
create rules for a bird, which describe how fast it should
fly and when it should fly towards another bird. Because
StarLogo makes use of graphical output, when the stu-
dent watches many birds simultaneously following those
rules, she can observe how patterns in the system, like
flocking, arise out of the individual behaviors. Build-
ing models from the individual, or “bird” level, enables
people to develop a good understanding of the system,
or “flock” level behaviors (Figure 1 shows the graphical
interface for the growth of an epidemic, another phe-
nomenon that can be studied in terms of complex adap-
tive systems).

4.1 StarLogo for Games

In the 1990s, a few of our undergraduate researchers
working on StarLogo began to build simple video

games, such as PacMan, Frogger, and Space Invaders.
It turned out that StarLogo’s graphical turtle metaphor
generalized quite nicely to user-controlled characters
that could be programmed to play out the video game’s
behaviors. Some aspects of game design were not
ideal, however. StarLogo’s complex text-based lan-
guage has always skewed it towards high school students
and older. Our experiences with these games inspired
the development of the Bongo video game construction
kit (Begel 1997), which helped scaffold the game de-
sign and construction process around three main design
features: scene, character and story. Paint tools enabled
children to draw the scene and lay out the initial posi-
tions of all the characters. Characters and their interac-
tions were designed next, followed by the rules for the
game and their enactment in the program. The game’s
characters and story were still programmed in StarLogo,
however, which limited Bongo’s accessibility.

In the next section, we discuss a new incarnation of
StarLogo which encourages the design of compelling
games and makes them easy for children to program.

5 StarLogo: The Next Generation

We are designing the next generation of StarLogo to be a
more satisfying game creation environment. The initial
goal is to make it suitable for making the 3D equiva-
lent of platform games or “scrollers”, games in which a
character moves across a scrolling landscape, encounter
other characters and sets out on a mission (e.g. Super
Mario Brothers). While we expect this environment to
be able to create many other kinds of games, given real-
istic expectations, we do have to constrain the kinds of
games that we expect children to build to make sure that
the design is programmatically tractable. For example,
it is important to have only a few characters, since the
player can only easily control one, and artificial intelli-
gence algorithms for controlling game characters are not
easily generalized to any arbitrary game a child might
want to build. A small world is desired so the child’s
entire game construction time is not taken by designing
the level and drawing in the scenery.

These goals have guided the development of our new
programming environment called “StarLogo: The Next

5

Generation” (StarLogo TNG). StarLogo TNG incorpo-
rates two major changes from previous versions of Star-
Logo – Spaceland,1 which provides a 3D perspective of
the game in action, and StarLogoBlocks, which provides
a graphical interface for building games. In this redesign
process, knowledge of our audience – primarily middle
school through high school and college – and the con-
text in which these tools might be used helped inform us
as we made decisions on the level of sophistication we
would require of the user. Often this tradeoff involves
providing fixed properties or characteristics to the envi-
ronment, which makes getting going very quick, but in
turn can limit choices and flexibility. Things like low-
level control, 3D rendering, and the like were fixed in
their functionality as a result.

5.1 Spaceland

As people today are inundated with high quality 3D
graphics on even the simplest of gaming platforms, stu-
dents have come to expect such fidelity from their com-
putational experiences. While the 2D “top-down” view
of StarLogo is very informative for understanding the
dynamics and spatial patterns of systems, it is not par-
ticularly enticing for students. Additionally, students of-
ten have difficultly making the leap between their own
first-person experiences in our kinesthetic learning Ac-
tivities, and the systems-level view of StarLogo.

Enter “Spaceland,” a three dimensional OpenGL-
based view of the world. This world can be navigated
via keyboard controls (and soon by an on-screen nav-
igator). The default view is similar to the old StarL-
ogo view, being a top-down representation (Figure 2a).
However, from this view, the user can zoom in on any
portion of the world for a closer look and view the 3D
landscape as they fly by. The other available view is the
“Turtle’s Eye” view (Figure 2b) in this representation,
the user sees out of the “eyes” of one of the turtles in the
system. As the turtle moves around they see what the
turtle sees. This works particularly well in seeing how
turtles bump off of objects, or interact with other turtles.
Of course, it is not just turtles per se, but shapes can be

1The name Spaceland is inspired by Edwin Abbot’s “Flatland”
where two-dimensional creatures discover the three dimensional world
called Spaceland.

Figure 3: Runtime view

imported so that they agents in the system are turtles or
spheres or Mario (Figure 2). The ability to customize the
characters provides a sense of personalization, concrete
representation, and also of scale. Lending further to the
customization capabilities are the abilities to change the
“Skybox” background (the bitmap image shown in the
distance) as well as the texture, color and topography of
the landscape. Since the top-down view is also still quite
useful, that 2D view is seen in an inlaid “mini-map” in
the lower-left corner of the screen (but may be reposi-
tioned as the user sees appropriate).

In runtime mode, users will see not just the 3D rep-
resentation of the world, but also the tools to edit the
landscape and the runtime interface (buttons and slid-
ers) with which a user can interact to start and stop the
model, or change parameters on the fly (3).

5.1.1 Additional 3D Benefits

Making games is just one reason to switch to a 3D envi-
ronment from the 2D representation of the existing Star-
Logo. While making it easier to initially engage stu-
dents through a more up-to-date look, a 3D representa-
tion has additional advantages. A 3D view can make the
world feel more realistic. This can actually be a limita-
tion in modeling and simulation, in that students feel that
more realistic-looking models actually represent the real
world, but in the proper context, a more realistic-looking
world can be used to convey useful representations of
scale and context – for example, conveying the sense of
a landscape or the changing of seasons. Moreover, the

6

Figure 2: Top-down and turtles-eye views in TNG

3D view of the world is what people are most famil-
iar with from their everyday experiences. Making the
leap into programming already comes with a fairly high
cognitive load. Providing people with as familiar an en-
vironment as possible can lighten that load and make
that leap easier. Similarly, a navigable 3D landscape can
provide a real sense of scale to a model that otherwise
appears arbitrary and abstract to a novice modeler. Fi-
nally, with the proliferation of 3D tools (particularly for
“modding” games) we can tap into the growing library
of ready-made 3D shapes and textures to customize the
world.

5.2 StarLogoBlocks

StarLogoBlocks is a visual programming language in
which pieces of code are represented by puzzle pieces
on the screen. In the same way that puzzle pieces fit to-
gether to form a picture, StarLogo blocks fit together to
form a program. StarLogoBlocks is inspired by LogoB-
locks (Begel 1996), a Logo-based graphical language
intended to enable younger programmers to program
the Programmable Brick (Resnick, Martin, Sargent &
Silverman 1996) (a predecessor to the Lego Mindstorms
product).

StarLogoBlocks is an instruction-flow language,
where each step in the control flow of the program is
represented by a block. Blocks are introduced into the
programming workspace by dragging a block from a cat-
egorized palette of blocks on the left side of the inter-
face. Users build a program by stacking a sequence of
blocks from top to bottom. A stack may be topped by a

procedure declaration block, thereby giving the stack a
name, as well as enabling recursion. Both built-in and
user-defined functions can take argument blocks, which
are plugged in on the right. Data types are indicated via
the block’s plug and socket shapes.

The workspace is a large horizontally-oriented space
divided into sections: one for setup code, one for global
operations, and one for each breed of turtles. A philoso-
phy we espouse in the programming environment is that
a block’s location in the workspace should help a user
organize their program. While separating code by sec-
tion appears to the user as a form of object-oriented pro-
gramming, in reality the system does not enforce this.
All code may be executed by any breed of turtle. Fish
can swim and birds can fly, but that certainly should not
prevent the user from successfully asking a fish to fly.

5.2.1 Graphical Affordances

The “blocks” metaphor provides several affordances to
the novice programmer. In the simplest sense, it pro-
vides quick and easy access to the entire vocabulary,
through the graphical categorization of commands. As
programmers are building models they can simply se-
lect the commands that they want from the palette and
drag them out. Perhaps more importantly though, the
shape of the blocks is designed so that only commands
that make syntactic sense will actually fit together. That
means that the entire syntax is visually apparent to
the programmer. Finally, it also provides a graphical
overview of the control flow of the program, making ap-
parent what happens when.

7

Figure 4: The LogoBlocks interface. A simple program
is shown that includes logical statements, random be-
haviors and movement. The blocks are assembled into a
complete procedure, drawing upon the palette of blocks
at the left.

For example, the following illustration of StarLogoB-
locks code on the left, and StarLogo code on the right
for a procedure which has turtles turn around on red
patches, decrease their energy, eat, and then die with a
10% chance and continue moving otherwise.

to run
if pc = red

[rt 180]
setenergy energy -- 1
eat
ifelse (random 100) < 10

[die]
[move]

end

While the code in StarLogoBlocks takes up more
space, it can be seen that the syntax is entirely visible
to the user. In contrast, the StarLogo code has mixtures
of brackets [], parentheses () and spaces that are often
confusing to users. The if-else conditional fully specifies
what goes in which socket. The if predicate socket has a
rounded edge, which can only fit Booleans, such as the
condition shown. Similarly, functions which take inte-
gers have triangular sockets. The two other two sockets
(for “then” and “else”) are clearly labeled so that a pro-
grammer (or reader of a program) can clearly see what
they are doing.

Figure 5: StarLogoBlocks and StarLogo representations
of the same code.

Blocks create more obvious indicators of the argu-
ments taken by procedures, as compared to text-based
programming. This enables us, as the game construc-
tion kit designers, to provide new kinds of control flow
and GUIs for the blocks without confusing the program-
mer. Adding a fifth parameter to a text-based procedure
results in children (and teachers) more often consulting
the manual, but introducing this fifth parameter as a la-
beled socket makes the new facility more apparent and
easier to use. Graphical programming affords changes in
these dimensions because a change in the graphics can
be more self-explanatory than in a text-based language.

While StarLogoBlocks and LogoBlocks share the
“blocks” metaphor, StarLogoBlocks is presented with
much greater challenges due to the relative complex-
ity of the StarLogo environment. LogoBlocks programs
draw from a language of dozens of commands, are typ-

8

Figure 6: The StarLogoBlocks interface.

ically only 10–20 lines long, have a maximum of two
variables, no procedure arguments or return values, and
no breeds. StarLogo programs draw from a language
with hundreds of commands and can often be a hun-
dred lines or more long. Screen real estate can become a
real limit on program size. Driven by this challenge, we
created a richer blocks environment with new features
specifically designed to manage the complexity and size
of StarLogo code.

One of the most important innovations is to incorpo-
rate dynamic animated responses to user actions. We use
this animation to indicate what kinds of user gestures are
proper and improper while the user is performing them.
For example, when a user drags a large stack of blocks
into an “if” statement block, the “if” block will stretch
to accommodate the stack. See the “Climb” procedure
in Figure 6. The first part of the if-else command has
one command to run (forward 1), while the else has two
(right random 90 and forward 1). The blocks expand
to fit as many commands as necessary so that the else
clause could in theory have dozens of commands.

If a user tries to use a procedure parameter in a differ-
ent procedure from which the parameter was declared,
all of the block sockets in the incorrect stacks of blocks
close up. When a user picks up a number block to insert
into a list of values (which in Logo may contain values
of any type), all block sockets in the list will morph from
an amorphous “polymorphic” shape into the triangular
shape of a number, to indicate that a number block may

be placed in that socket. We plan to continue adding new
kinds of animations to help prevent users from making
programming errors in the system.

These animations are implemented using vector-
based drawing. Vector drawing enables a second im-
portant feature: the zoomable interface. Using a zoom
slider, the user can zoom the entire interface easily (see
the zoom slider in the upper-right of Figure 6) to look
closely at a procedure they are writing, or expand their
view to see an overall picture of their project.

Another innovation has been “collapsible” proce-
dures. Individual procedures can be collapsed and ex-
panded to see or hide their contents. This allows the
programmer to build many small procedures and then
“roll up” the procedures that they aren’t using and put
them on the side. Figure 6 shows the “Eat” and “Move”
procedures in their rolled up states. The individual com-
mands are not visible, like they are in the other two pro-
cedures, but can be made visible by clicking on the plus
sign on the block. Additional advances provide for the
easy creation of new procedures, including procedures
with an arbitrary number of parameters, and variables.

Together these innovations lower the barrier of en-
try for programming, thus facilitating model construc-
tion/deconstruction in the context of science, math or
social science classes.

5.3 StarLogo TNG as Game Builder

The first version of StarLogo TNG will support the
development of first- and third-person 3D exploration
games. All games consist of three main pieces: charac-
ters, scenery, and behavior. Characters are implemented
using StarLogo turtles; different categories of charac-
ters are defined using StarLogo breeds. The scenery of
a game is created in the StarLogo Terrain Editor. Sim-
ilar to the SimCity city builder editor, our Terrain Edi-
tor supports landscaping, drawing, and character place-
ment. The behavior of the game and the characters are
programmed using StarLogoBlocks. Our first version of
StarLogo TNG will support relatively simple behaviors
(such as moving around, jumping and shooting), but be-
cause StarLogo TNG is a full-fledged programming en-
vironment, we expect people to be able to build more
complex character behaviors (incorporating desires like

9

hunger and greediness, or semi-autonomous motion or
intelligence). In fact, while we have designed StarLogo
TNG with simple exploration games in mind, building
a more complex game with original characters is a great
challenge for a designer, especially one we would like to
get hooked on programming.

In the next section, we will walk through the creation
of a Super Mario Brothers-like video game using the
StarLogo TNG toolkit.

6 Building Super Mario Brothers

Super Mario Brothers was one of the most canonical and
popular games for the Nintendo Entertainment System,
introduced in August of 1985. In this game, two charac-
ters, Mario and Luigi (the brothers) are controlled by the
players to make their way through the two-dimensional
side-scrolling world of the Mushroom Kingdom in an at-
tempt to rescue Princess Toadstool, who has been taken
captive by Bowser, the evil King of the Koopas. Along
the way, the brothers face Koopa Troopas (turtles that
can be stunned by jumping on them), deadly Venus
fly traps (must avoid touching them), Goombas (mush-
rooms which you can shoot with a fireball), and bottom-
less pits. To help them, there are floating magic boxes;
if you hit them from below, out will pop a star (makes
you invincible for a short time), a mushroom (makes you
twice as bit and resistant to one hit from an enemy), or
an extra player mushroom (gives you one more life).

We will build a 3D version of this game, similar to
what one would see by playing Super Mario 64, an up-
dated version of the game designed for the Nintendo 64
System. We start our game by designing the characters.
To shorten the exposition, we will simplify the game to
include only two characters and their interactions.

6.1 Characters

• Mario The player character. Mario looks like a
plumber and has a red hat and overalls. He can
jump, punch upwards, and sometimes shoot fire-
balls (if he has gotten a fire flower).

• Koopa Troopa Evil turtle henchman. Koopa
Troopas patrol areas of the screen and crawl like

Figure 7: By clicking on the Add Breed (+) button, the
user can create a breed of Koopa Troopa turtles.

turtles. Koopa Troopas can be stunned if Mario
jumps on them. They can be killed if Mario kicks
them while they are stunned. Koopa Troopas can
kill Mario if they crawl into him.

To create these characters in StarLogo TNG, we cre-
ate two new breeds by clicking on the Add Breed but-
ton in the StarLogoBlocks window (Figure 7). Design-
ers would associate several shapes and animations (3D
shapes in StarLogo TNG come with prebuilt animations)
with a breed. StarLogo TNG comes with a variety of
shapes, and users can add more of their own.

6.2 Scenery

We next move on to describe the scenery of Level 1. Un-
like the original Super Mario Brothers, our scenery will
be three dimensional. We switch to the StarLogo Terrain
Editor and describe our landscape. First, we initialize
Spaceland to a flat world covered with a grass texture.
Then we grow three dimensional blocks on the surface
of the world that Mario can jump on. These blocks will
help us create a maze. At one end of the world, we create
a flagpole-like extrusion from the world and color it like
a metallic flagpole. When Mario reaches this spot, he
wins the game. Between a few of the blocks, we push the
ground down to create a pit. If Mario falls into the pit,
he will die. We make each pit short enough for Mario

10

to jump over, but leave some longer to make the jumps
more challenging.

We design the level to encourage Mario follow a path
to the flagpole. Along the path, we place a Koopa
Troopa on patrol. We place one Koopa Troopa on ev-
ery block as well. Sometimes we place more than one in
an area to make it more difficult for Mario to get around
them. We save this terrain into a terrain block called
Level 1. This block will appear in the Block Palette in
the StarLogoBlocks window.

6.3 Behavior

Each character has behaviors that must be programmed
by the user. Designers could program a funny way
to walk, add shooting capability, or the ability to fly.
Mario’s behaviors are the simplest. He listens to the
user’s joystick to move him left, right, north and south.
In addition, when the user hits the A button, Mario
jumps. Mario must also keep track of how many lives
he has – when he loses them all, the game is over.

We create one procedure: Respond To Joystick that
uses two joystick blocks from the Block Palette. The
first joystick block has four slots ready for a block stack,
one for each cardinal direction. The second block has
two slots, one for each button on the joystick. In each
slot, we place code blocks that causes Mario to react to
the joystick. For example, if the user moves the joystick
left, we want Mario to turn to the left and move forward
one step. If the user pushes the A button, we want Mario
to jump using a Jump block. To determine if we fallen
into a pit, or won the game, we create another procedure
stack called Check State (Figure 8).

Koopa Troopas have a very simple behavior. They
move back and forth over a certain distance (patrolling
the region). This distance may be overridden if they’re
on a block and reach the edge prematurely. A Koopa has
one procedure called Move (Figure 9).

Distance-to-go is a variable that Koopas use to deter-
mine how many steps they should patrol. Koopas also
need a variable called Hidden? which indicates whether
they have been stomped by Mario. If Hidden? is true,
they should stand still and not run the Move command.

Finally, we must describe the global behaviors of the
game. What happens when each of these characters

Figure 8: Mario’s Check State function.

hit one another? When Mario hits a Koopa Troopa, he
might die, or the Koopa might hide. When two Koopas
hit one another, they reverse direction. We describe
these behaviors with a Collision block that we drag out
for each breed. There is one code slot in the Collision
block for every breed that our character may hit.

If Mario hits a Koopa Troopa, we run some logic to
see what happens (Figure 10). If Mario jumps on a
Koopa (i.e. when Mario collides with a Koopa where
his height is higher than the Koopa’s), the Koopa hides
in his turtle shell. If Mario touches the Koopa in any
other way, Mario dies.

To finish up the game, we set up the scoring system.
The score is a built-in property of all games; we modify
the procedures above to increment the score when Mario
stomps on a Koopa and when Mario wins by reaching
the flagpole.

11

Figure 9: Koopa’s Move function.

7 Field Testing

While StarLogo TNG is still in development, it has
reached a point in development where we have been able
to do pilot testing with small groups of students, and
classroom usability focus groups with teachers. Both of
these mechanisms have helped guide the development
process, and provide comparative information with the
previous version of StarLogo. Below we describe a case
study from one of the pilot tests with students, as well as
some of the feedback we have received from the teacher
focus groups.

7.1 Pilot Study

Our case studies employ comparative tests between the
existing StarLogo and StarLogo TNG. We have targeted

Figure 10: Mario Vision block describes what happens
when Mario collides with a Koopa.

students who have familiarity with the concepts of Star-
Logo, but have not done any programming. In one
case study we worked with pairs of students at a Boston
metropolitan area private school, in which students have
used StarLogo models. In a 90 minute session the stu-
dents were given a simple programming task, along with
instructions, in one environment and then the other. The
programming task, at its minimum, involved 6–10 lines
of code. Students were videotaped during their program-
ming session, and also debriefed afterwards. This partic-
ular case was with two tenth grade girls (Alice and Beth)
who had never programmed before.

They strongly preferred the StarLogoBlocks pro-
gramming paradigm to the text based paradigm of the
existing StarLogo. Specifically, they pointed out the way
in which you could follow the flow of programs visually,
and that you didn’t need to worry about the syntax.

Alice: It is easier to see the commands too because
instead of typing in random things that you don’t know
what they really mean this is like a puzzle piece and you
can kind of put it together.

Beth: You can tell if you are doing it right if the puz-
zle pieces fit too. Because before I was like questioning
myself if I was doing it right like bracket or space. I
don’t know.

They both expressed satisfaction with the empower-
ment that programming provided them. Being able to
take control over the program was clearly more satisfy-

12

ing than simply manipulating programs.

Alice: I definitely think this one is a plus, since we can
figure out how to program. Since sometimes in a simu-
lation you want to change it. I’m just the kind of person
who wants to put their own stuff in there and see what
happens. And I haven’t been able to do this because I’m
not a programmer.

It is of note that they do not consider themselves
programmers, even after writing a program. Two boys
who were doing the activity simultaneously called them-
selves programmers at the end, though one had never
done any computer programming, and the other had only
“programmed” web pages in HTML. In other tests and
focus groups we have consistently received highly posi-
tive feedback from girls and women who have felt intim-
idated by programming languages, which to them have
been seen as male-oriented.

The 3D environment also appealed to these girls.
While they expressed an understanding of the value of
the 2D top-down view for getting a sense of the sys-
tem level dynamics (which we have since given a greater
presence in the new version as a result), they liked that
you could focus on the interactions of a single turtle or
small number of turtles in this version.

Beth: I think what this does with the 3D too, is like
you can track one turtle and just track his whole course.
You can follow him through. And that can help you un-
derstand it.

Alice: With the other one, we’ve been doing evolu-
tion models in class. And we had to see when they re-
produced what color came off, like this might be able to
help us see which ones thrive and when they reproduce
and what happens to them.

Understanding the value and role of the systems-level
view and individual view shows that these students have
been able to make a huge conceptual leap. Knowing that
the large-scale patterns are the results of these individ-
ual interactions is a start at overcoming the Centralized
Mindset (Resnick 1994). It also allows them to start gen-
erating hypotheses about the specifics of how these two
scales are connected. But the graphically rich 3D world
also makes the world more tangible to them. The 2D
world, while illustrative, is limited in its ability to pro-
vide a sense of the world. The 3D world has customiz-
able characters, terrains and environmental context. This

aspect appealed to them. In the following example, one
of the students is commenting on the potential she sees
for customizing the backgrounds to convey information
about the model.

Beth: This could be cool too because you can see the
environment in the background. We had a lot of ones in
the other one where we had a drought. It would be cool
this way since you could see what was happening to the
turtles.

The backgrounds, and other graphically rich compo-
nents of the visualized 3D StarLogo world are an easy
for programmers to customize their world, and convey
information about the context of the model to their au-
dience. The fact that the background, turtles, or land-
scape look like something recognizable has tremendous
explanatory power.

7.2 Feedback from Teachers

We have also done several focus groups with teachers
who have used the existing StarLogo to develop simula-
tions. While a few initially have expressed some reser-
vations about their existing programming skills becom-
ing obsolete, they have embraced the StarLogoBlocks
programming metaphor and feel that it will provide the
necessary comfort for introducing the students to pro-
gramming — first by program deconstruction and then
through model building. Most of the feedback has been
quite positive, while other feedback has allowed us to
modify the programming and runtime worlds to better
accommodate a variety of programmers and learners.

On the positive side, nearly everyone who has seen the
blocks has commented on how much easier it is to see
the flow of the programs, and that it relieves the stress of
having to remember all of the syntax. We have, however,
been asked if it will be possible to “drop down” to the
text level after setting things up. Our answer is “no”. It
is our goal to make it possible to construct sophisticated
programs using this paradigm, and we are not treating
the blocks as a starting place. Algebraic expressions
have been problematic, in that it takes several clicks and
drags to write expressions. As a result, we have revised
the layout of algebraic expressions to appear less proce-
dural, and will eventually add an algebra-specific mode

13

that will allow basic mathematical expressions to be en-
tered by keyboard and laid out automatically in blocks.

Other feedback on the programming side has led to
collapsible procedures and zooming features that enable
the navigation of multiple procedures and lengthy code.
As mentioned previously, many users have valued the
complimentary perspectives of the 2D and 3D views,
prompting us to redesign the runtime interface with the
ability to show both 2D and 3D simultaneously, or sim-
ply one or the other. The only major concern that teach-
ers have expressed is whether it will run on their com-
puters, due to the 3D graphics card requirements, which
are relatively low for 3D games, but may not work on
older computers without dedicated graphics cards.

8 Conclusion

The testing and focus groups that we have done so far
have suggested that the blocks design will promote the
use of StarLogo as a programming tool in the classroom.
Teachers feel more secure in teaching this paradigm to
their students, and students have been able to easily de-
code programs written in this way. While it is still early
to tell, it seems that it may also provide a more female-
friendly programming environment than other tools.

The 3D world is “definitely cool”, in the words of
many of the students. While teachers have been more
lukewarm in their reception of this aspect, they recog-
nized that it will be more attractive to students. It is
clear that both 2D and 3D representations will have a
place in this environment, but the ability to customize
the world and make it look like something recognizable
(though not realistic — which is important in conveying
that these are simply models) is a big plus for students as
they approach modeling for the first time. It also allows
students to invest themselves personally in their prod-
ucts, which is empowering.

StarLogo TNG will be in development for some time.
Some of the next steps involve adding hooks like net-
work connectivity and joystick control, in order to add
to the attraction of those wishing to build games. But
we also will be building libraries of blocks for specific
academic domains (e.g. ecology, mechanics, etc.) that
will allow students to quickly get started building sci-

ence games using some higher level commands, which
can in turn be “opened up” and modified as their skills
progress.

Acknowledgments

The authors would like to thank all of the undergraduate
researchers who worked on the implementation of Star-
Logo TNG. We thank Hal Scheintaub for welcoming us
into his classroom for our pilot study. The research in
this paper was supported in part by a National Science
Foundations ITEST Grant (Award #0322573).

References

Agalianos, A., Noss, R. & Whitty, G. (2001), ‘Logo in
mainstream schools: the struggle over the soul of
an educational innovation’,British Journal of So-
ciology of Education22(4), 479–500.

American Association for the Advancement of Science
(1993),Project 2061: Benchmarks for Science Lit-
eracy, Oxford University Press, New York.

Begel, A. (1996), ‘LogoBlocks: A graphical program-
ming language for interacting with the world’.
Massachusetts Institute of Technology, Dept. of
Electrical Engineering and Computer Science.

Begel, A. (1997), Bongo: A kids’ programming environ-
ment for creating video games on the web, Mas-
ter’s thesis, Massachusetts Institute of Technology,
Dept. of Electrical Engineering and Computer Sci-
ence.

Budge, B. (1983), ‘Pinball construction set’, Electronic
Arts Inc.

Clickteam S.A.R.L. (2004), ‘The Games Factory’.
http://www.clickteam.com/English/tgf.htm.

Conway, M., Pausch, R., Gossweiler, R. & Burnette,
T. (1994), Alice: A rapid prototyping system for
building virtual environments,in ‘Proceedings of
ACM CHI’94 Conference on Human Factors in
Computing Systems’, Vol. 2 ofSHORT PAPERS:
Designing Interaction Objects, p. 295.

14

Cypher, A. & Smith, D. C. (1995), Kidsim: End user
programming of simulations,in ‘Proceedings of
ACM CHI’95 Conference on Human Factors in
Computing Systems’, Vol. 1 ofPapers: Program-
ming by Example, pp. 27–34.

di Sessa, A. & Abelson, H. (1986), ‘Boxer: a re-
constructible computational medium’,Communi-
cations of the ACM29(9), 859–868.

Europress Software Ltd. (2004), ‘Klik & Play’.
http://www.clickteam.com/English/klilk&play.htm.

Harel, I. (1990), ‘Children as software designers: A con-
structionist approach for learning mathematics’,
The Journal of Mathematical Behavior9(1), 3–93.

Harel, I. & Papert, S., eds (1991),Constructionism,
Ablex Publishing, Norwood, NJ.

Ingalls, D., Kaehler, T., Maloney, J., Wallace, W. &
Kay, A. (1997), Back to the future: The story of
Squeak, A practical Smalltalk written in itself,in
‘OOPSLA ’97 Conference Proceedings: Object-
Oriented Programming Systems, Languages, and
Applications’, ACM Press, pp. 318–326.

Kafai, Y. B. (1995),Minds in play: Computer game de-
sign as a context for children’s learning, Lawrence
Erlbaum Associates, Hillsdale, NJ.

Kafai, Y. B. (1996), ‘Software by kids for kids’,Com-
munications of the ACM39(4), 38–39.

Logo Computer Systems Inc. (2004), ‘Microworlds
Logo’. http://www.microworlds.com.

Lucena, A. T. (n.d.), ‘Children’s understanding of
place value: The design and analysis of a
computer game’. http://www.stagecast.com/cgi-
bin/templator.cgi?PAGE=Corporate/ presenta-
tions/PRESENTATIONS.

Murnane, R. J. & Levy, F. (1996),Teaching the New
Basic Skills, Principles for Educating Children to
Thrive in a Changing Economy, Free Press, New
York.

National Research Council (1999),Being Fluent with
Technology, National Academy Press, Washing-
ton, DC.

Papert, S. (1980),Mindstorms: Children, computers,
and powerful ideas, Basic Books, New York.

Papert, S. (1993),The Children’s Machine: Rethinking
School in the Age of the Computer, Basic Books,
New York.

Repenning, A. & Sumner, T. (1992), Agentsheets: A
tool for building visual programming environ-
ments,in ‘Proceedings of ACM CHI’92 Confer-
ence on Human Factors in Computing Systems –
Posters and Short Talks’, Posters: Helping Users,
Programmers, and Designers, p. 30.

Resnick, M. (1994),Turtles, Termites, and Traffic Jams:
Explorations in Massively Parallel Microworlds
(Complex Adaptive Systems), MIT Press, Cam-
bridge, MA.

Resnick, M. (2002), Rethinking learning in the digital
age,in G. Kirkman, ed., ‘The Global Information
Technology Report: Readiness for the Networked
World’, Oxford University Press, Oxford, UK.

Resnick, M., Martin, F., Sargent, R. & Silverman,
B. (1996), ‘Programmable bricks: Toys to think
with’, IBM Systems Journal35(3-4), 443–452.

Resnick, M., Rusk, N. & Cooke, S. (1998), The
Computer Clubhouse,in D. Schon, B. Sanyal &
W. Mitchell, eds, ‘High Technology and Low-
Income Communities’, MIT Press, Cambridge,
MA, pp. 266–286.

State of Maine, D. o. E. (2004), ‘Maine learning tech-
nology initiative’. http://www.state.me.us/mlte/.

The Education Arcade (2004), ‘Education Arcade’.
http://www.educationarcade.org.

Wolfram, S. (2002),A New Kind of Science, Wolfram
Media Inc., Champaign, IL.

15

